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PREFACE

This state-of-the art review was prepared by the Manufacturing Technology

Information Analysis Center (MTIAC) under Contract DLA-900-84-C-1508 for the

Department of Defense.

Higher order languages are defined as textual languages in this study.

However, the study also highlights the trend toward the use of teach pendants

which have incorporated in them some higher order capabilities, noting that

the choice depends upon organizing perception of user friendliness. A major

portion of the review is dedicated to a discussion of currently available

robot programming languages. The efforts of universities and research

institutes are reviewed as are commercial offerings. Languages are discussed

in terms of levels (servo, manipulator, and task). CAD/Graphic systems are

also covered. is.

The discussion of languages leads to a section on language comparison.

Language comparison constitutes the principal portion of the study and sets

forth the basis for comparison, a listing of elements to be compared, and a

comparison of several robot programming languages (VAL, VAL II, RAIL, KAREL,

and AN-L/X).

Completion of the language comparisons permitted this review to summarize

some of the current issues in the field. Issues include the relationship to

teach vs off-line programming, language implementation, trade-offs necessary

as languages approach task level, and the appropriate scope of the robot

programming languages when considering manufacturing cells as opposed to

stand-alone installations.

The state-of-the-art review concludes with a discussion of special robot

programming considerations associated with defense manufacturing. Batch

manufacturing, communication between contractors and subcontractor, documenta-

tion of such information as cell status, and the impact of remanufacturing are

cited as relevant. J, .
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Recommendations suggest research in areas such as the need for a PP.%

programming methodology that recognizes the totality of robot programming

requirements, world modeling, simulation, communication, sensor technology and

safety. The conclusions emphasize the importance of supporting the entire

robot programming system, noting that if a program is to be written directly

in a language, the language needs to have both high-level constructs for ease

of programming and low-level constructs for explicit control. In the same

sense, programs written using an applications interface need a language that .

supports a flexible user interface. -

The content of this review has been derived from a review of over 50

references. However the subject of robot programming is constantly evolving

so that the literature had to be supplemented by 13 field interviews with

specialists in robot programming and languages. The interviews are listed in

an appendix. Upon completion, the document was reviewed by experts in the

field. The writers particularly wish to thank Dr. Lloyd Lehn, Office of the

Assistant Secretary of Defense, Acquisition and Logistics, for his guidance

and review. Additionally the authors appreciate comments from the following

reviewers:

Dr. Graham H. Morris
National Bureau of Standards

Dennis C. Haley
Martin Marietta

Bertil Thorvaldsson
ASEA Robotics Inc.

Dr. Margaret A. Eastwood
CIMCORP

Dr. Robert L. Haar
General Motors

Mitchell Ward
GM Fanuc Robotics
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This state-of-the-art review is one of a series of reports intended to

keep MTIAC users abreast of technology and information within the scope of

lanufacturing Technology. Information about other reports may be obtained by

contacting:

MTIAC
c/o Cresap, McCormick and Paget
Division of TPF&C Inc.
10 West 35th Street
Chicago, IL 60616

"N

The findings in this report are not to be construed as
an official Department of Defense position unless so
designated by other authorized documents.

The citation of any commercial products, trade names,
or manufacturers in this report does not constitute an
official endorsement or approval of such items or
companies by the United States Government.
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1. BACKGROUND

-6
1.1 INTRODUCTION N W.

The purpose of this paper is to present a state-of-the-art review of -.

higher order languages for robots. Research was conducted by a study of

published literature and by interviews with industry professionals. The

literature consisted of papers published in technical journals and presented

at conferences, industrial handbooks, and textbooks. Interviews were con-

ducted with professionals from the defense community (primarily the services

and aerospace contractors), the nondefense community (primarily automotive

industry), universities, and the robot vendors.

The subject of robot programming languages is not mature. Consequently, .,
there are conflicting opinions on various issues and different approaches have

been explored. This creates some confusion, particularly for nonprogrammers, S

when trying to evaluate the strengths and weaknesses of various languages.

The intent of this review is to illustrate the current issues in robot pro-

gramming, identify the languages, and provide a method by which languages can

be evaluated.

The review is structured into six sections. Section 1 provides a back- -.

ground of robot programming approaches, including the strengths and weaknesses

of different techniques. Section 2 identifies and describes robot languages

that are commercially available and those that have been developed by univer-

sities and research institutes. Section 3 presents a method by which robot

languages may be evalulted. In addition, some comparisons that have been

published in the literature are examined. Section 4 discusses some issues

relevant to defense manufacturing. Recent and ongoing research is discussed

in Section 5. Finally, conclusions and recommendations are presented in

Section 6.

1.2 SCOPE

The objective of this paper is to review the state of the art in higher .

order programming languages for robots. The scope is limited to languages

that apply to industrial robots in manufacturing applications. Different 0

types of robots will have different programming language requirements. A

- 1 -



manufacturing robot, for example, operates in a very structured and predict-

able environment when compared with that of a battlefield robot. Although the

specific language requirements are different, the general issues discussed in

this paper are generally applicable to all types of robots.

There is by no means an industrywide definition for "higher order lan-

guage" for robots. Definitions range from an "off-line programming language"

to "any language containing higher level constructs" to "task level language."

The definition providing the clearest distinction of what constitutes a higher ".

order language is that which distinguishes between teach pendant programming

and off-line textual languages. By definition then, all higher order lan-

guages are characterized as textual and man-readable, though the environment

in which they are generated may be off- or on-line with the robot controller.

Teach pendant programming is discussed, however, to illustrate the evolution

and benefits of higher order languages and to fill In the backdrop for the

current debates over robot programming techniques.

1.3 COPUTER PROGRMR4ING LANGUAGES

One school of thought promotes the use of general purpose computer pro-

gramming languages as the base for robot programming languages. In fact, the

evolution of robot programming languages closely parallels that of computer

languages. A review of the evolution of programming languages is therefore

helpful in providing a perspective from which to evaluate current and future

robot languages.

The earliest programming, using a machine-specific language, required
intimate and detailed knowledge of the computer hardware. Machine language

programming involved coding instructions in binary format (a series of ls and

Os), and each machine had its own format for particular instructions. Editing

was often done through a series of toggle switches on the front panel of the

computer. There were no high level instructions, so even a simple operation

like adding two numbers involved a series of instructions specifying where the

data was to be retrieved from, what was to be done, and where the result was

to be stored. A major portion of a programmer's time and energy was spent on
mentally translating his program concept, such as "addition," into the corre-

sponding binary codes that would literally activate the computer circuitry

necessary to access, manipulate, and store data.

-2-
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To relieve the programmer of some of the details of machine programming, '.

a program called an "assembler" was developed. This first programming tool

allowed the creation of programs in a more symbolic fashion using mnemonics

for operation codes and names for data locations. The assembly language

program would be automatically translated by the assembler into the proper

binary machine codes for input to the target execution computer.

Assembly programming is still widely practiced today, for two major

reasons. An assembly program has a nearly one-to-one relationship between its

instructions and the translated machine language instructions. Therefore,

assembly programs yield executable programs that are as space and time effi-

cient as programs coded directly in machine code.

The other major reason is that hardware attached to computers, such as

*printers, terminals or servo drives, requires very low-level machine-specific

control signals for operation. The specific requirements of control demand

that a program be capable of manipulating memory locations very explicitly, ,.*.

just as machine code programs do. Consequently, assembly programming has a .

place wherever the most efficient and the most hardware-oriented programming

is required. Many of the motion control algorithms in robotics are written in

assembly code because speed of execution is essential.

A major evolutionary step in programming languages came in 1953, when IBM

wrote the first "compiler" for a language called FORTRAN. This first high-

level language was designed to perform "Formula Translation" for engineers;

that is, it converted a series of calculations into a program for solution by

a computer. A FORTRAN compiler, like any compiler, translates a program

written in a higher-level, problem-oriented symbolic language into a lower-

level, hardware-oriented language such as assembly. During the translation

process, other programs or data may be brought together or compiled in a

single output file called an object program.

Thousands of such high-level languages have been developed over the

years, sometimes in conjunction with the corresponding compiler/translator, as

was the case with FORTRAN, or sometimes as a stand-alone item requiring major

independent initiatives to develop a compiler, as with the Ada language. The

reason a language is different than its implementation (the compiler) is that L

the language is problem-oriented while the implementation must necessarily be

hardware-oriented. This division allows for many languages to be usable on a

3
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variety of computers by virtue of forcing compilers to address the hardware

implementation issues, leaving the high-level programming language free to

express just the problem itself.

The left side of Figure 1 shows how the simple problem "2 + 3 = ?" is

programmed in the high-level language FORTRAN, and what the resulting assembly

code is after processing by a FORTRAN compiler for a VAX 11/785 computer. The

last stage shows what the actual machine language program looks like after

processing by an assembler. The point of detailing out these processing

stages is that a programmer may have programmed the solution to the question

"2 + 3 = ?" in either the FORTRAN, assembly, or machine languages directly.

An even higher level of programming is also illustrated, as a goal driven

query processor. In the earliest days of programming, the only computer

language available was machine, but 30 years later thousands of languages can

express the same problem in a more or less concise manner as the given FORTRAN

program.

The high-level general purpose computer languages have evolved over the

years, and robot programming languages have paralleled this evolution.

Unstructured languages such as BASIC and FORTRAN were the first to be devel-

oped. These were followed by the structured languages such as PASCAL and C.

*,any present day robot languages are based on the concept of structured lan-

guages. Currently, functional languages and object-oriented languages are

being developed. Gini and Gini (1)* suggested that future robot languages
6..

will be based on the concepts of these languages. This is due, in part, to an

anticipated change in the traditional Von Neumann computer architecture which

will occur in the near future.

High-level languages are independent of the computer hardware. A program

written in a high-level language will run on any computer with the appropriate

translator. There are two methods of translation. An interpreter translates

one instruction, executes it, then translates the next instruction, executes

it, and so on. The advantage is that the programmer can edit and then

execute a few instructions at a time, which makes debugging programs easier.

*Numbers in parentheses refer to list of references at the end of this report.
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The disadvantage is that interpreted programs run more slowly and are less V.'.,

memory efficient. A compiler, on the other hand, reads the entire program,

translates it, and produces an object code, which is an executable machine .

level program. The advantage to a compiler is that it produces a program that

executes faster and is memory efficient. The disadvantage is that debugging

is a slow process because the entire program must be recompiled each time it

is edited. BASIC is an interpreted language and FORTRAN is a compiled lan-

guage. Those familiar with these languages can appreciate the tradeoffs

between ease of program development and speed of execution. The issue of

interpreted versus compiled languages is very relevant to robotics, because

some languages are interpreted and others are compiled.

The next level up is that of the application programs. These are compu-

ter programs, usually written in a high-level language, that provide a user-

friendly interface for performing some task. Spreadsheets and word proces-

sors, for example, are applications programs. They allow someone unfamiliar •

with computer programming to perform operations on a computer. The actual

computer program being executed is transparent to the user. In much the same

way, there are interactive robot programming packages which run on graphics

systems and computer aided design (CAD) systems. The actual robot program

generated by these packages is transparent to the robot programmer. This

topic is explored in more detail in Section 1.6.4.

The most generic criteria for evaluation of computer languages include

the ease of programmability and the degree to which the language is open to

the environment. 'ore specifically, Pratt (2) discusses the following eight

issues generic to all programming, which will later be shown as relevant to

robot programming:

1. Clarity and simplicity of the language concepts

2. Clarity of syntax

3. Naturalness for the application

4. Support for abstraction

5. Ease of testing/verification/simulation

6. Programming environment features related to the language

7. Portability

8. Cost of development, execution, maintenance
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Every language designer considers these criteria to a greater or lesser

degree. Similarly, a programmer examines the range of available languages

with the same criteria in mind, as each new application arises. Given the

number of criteria here, and the subjectivity of them, it is no wonder that r

there are so many languages and that the effort involved in picking one for a

particular application is formidable. The same is true of robot programming

languages.

If we examine robot programming with these criteria in mind, it becomes ""

apparent that a few of these have been thoroughly addressed, while others have

been virtually ignored. Conventional data processing languages also tend to

selectively address these points, but it must be remembered that those lan-

guages have a substantial history of design, development, and revision.

Relative to robot languages, conventional languages are much more mature and

standards do exist, i.e., FORTRAN 77, COBOL 66, and Ada.

As a final note, it is important to realize that there are two distinct ,

environments in computer programming: the programming environment and the -

operating environment. The programming environment consists of the hardware, .

software, and tools used to develop a program. The operating environment 0

consists of the hardware and software involved in the execution of the pro- P

gram. To clarify the point, consider a commercial spreadsheet. The program- e

ming environment is located at the vendor's site, and consists of the computer el"

and tools used in developing the product. The operating environment, on the

other hand, is at the customer's site, and consists of the computer, operating

system programs, and equipment on which the product is used. The programming

and operating environments are impacted by the implementation of the language.

As noted earlier, an interpreted language is easier to debug (programming

environment) but slower in execution (operating environment) than a compiled

language. In robotics, the programming and operating environments are

extremely important considerations in the language. This issue is explored

further in Sections 3.1 and 3.2. 0
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